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Abstract

We pursue a new method, based on lattice QCD, for determining the quantities ��, �1, and �2 of
heavy-quark e�ective theory. We combine Monte Carlo data for the meson mass spectrum with
perturbative calculations of the short-distance behavior, to extract �� and �1 from a formula from
HQET. Taking into account uncertainties from �tting the mass dependence and from taking the
continuum limit, we �nd �� = 0:68+0:02

�0:12 GeV and �1 = �(0:45 � 0:12) GeV2 in the quenched
approximation.
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In the past decade or so, heavy-quark e�ective theory
(HQET) has become an indispensible tool for studying
the physics of hadrons, such as B and D mesons, con-
taining a single heavy quark. The main physical idea
is simple: as the heavy-quark mass increases, the wave
function of a \heavy-light" hadron depends less and less
on the heavy-quark mass [1{3]. This is precisely as in
atomic physics, where properties of hydrogen and deu-
terium are almost the same.
A central result from HQET is the heavy-quark expan-

sion of a hadron's mass. Through order 1=m, the massM
of a spin-J meson (J = 0, 1) is [4]

M = m+ ���
�1
2m

� dJ
zB�2
2m

+ O(1=m2); (1)

where d0 = 3 and d1 = �1 tracks the spin dependence.
Each term in Eq. (1) has a simple physical interpreta-
tion: m is the heavy-quark mass, the de�nition of which
is elaborated below; �� is the energy of the light quark
and gluons; ��1=2m is the kinetic energy of the heavy
quark; and dJzB�2=2m is the hyper�ne energy of the
heavy quark's spin interacting with the chromomagnetic
�eld inside the meson. The quantities ��, �1, and �2 in
Eq. (1) describe the long-distance part of the bound-state
problem. At long distances QCD is intrinsically nonper-
turbative, so it is not easy to calculate them from �rst
principles. This should be possible with lattice gauge
theory, and the aim of this Letter is to demonstrate a
new method for computing ��, �1, and �2.
Part of the utility of HQET is that the lambdas|��,

�1, and �2|appear also in the heavy-quark expansions
of inclusive decay spectra [5{8]. Thus, they enter into
the determination of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements jVcbj [9,10], and jVubj [11,12].
The spin splitting MB� �MB gives a simple way to es-
timate �2, but meson masses alone are not enough to
deduce �� and �1. Moments of inclusive decay distribu-
tions [13{15] do o�er a way to relate experimental data
to �� and �1, but, nevertheless, an ab initio QCD calcu-
lation should be of interest.
Before explaining our method for computing the lamb-

das, it is useful to recall how they are de�ned. HQET is
an e�ective �eld theory, so it introduces an energy scale �
to separate long- and short-distance physics. All quanti-
ties (except dJ ) on the right-hand side of Eq. (1) depend
on � and the renormalization scheme used to de�ne it.
(Meson masses remain independent of �.) Physics from
distances shorter than ��1 is lumped into Wilson coe�-
cients, such as m, 1=2m and zB=2m in Eq. (1). Physics
from distances longer than ��1 is described by opera-
tors in the Lagrangian of HQET. The lambdas are ma-
trix elements of these operators. When computing them
one should renormalize the operators so that the lamb-
das are portable to the phenomenology of inclusive de-
cays. Because those analyses compute the Wilson coe�-
cients in perturbative QCD, it is most common to renor-

malize HQET in a mass-independent scheme. Then the
quark mass m in Eq. (1) is the pole mass of the under-
lying theory, i.e., QCD. This choice of scheme obscures
the �-dependent character of m and, thus, �� and �1,
but one should still think of the pole mass as a special
choice of perturbative short-distance mass. The scheme
is easily portable, because the pole mass is infrared �nite
and gauge independent at every order in perturbative
QCD [16], and the relation between the pole and MS
masses in QCD is known through order �3s [17].
Another property of the lambdas is that they are in-

dependent of the heavy-quark mass (if, as we do, one
distinguishes � from m). HQET starts with the in�nite-
mass limit, or static e�ective theory [2,18,19]. The eigen-
states of this theory are independent of m. One can then
develop the expansion in 1=m of the underlying theory
(QCD) around the in�nite-mass limit, so that matrix ele-
ments are taken in the in�nite-mass eigenstates [20,21,4].
Our lattice method retains the logic and structure of

the usual application of HQET. Lattice gauge theory
with Wilson fermions has a stable heavy-quark limit [22],
in which the Isgur-Wise heavy-quark symmetries are
prominent. Indeed, the static limit is the same as for
continuum QCD. Consequently, one may apply HQET
directly to lattice gauge theory, to separate long- from
short-distance physics [23]. The key di�erence is that
there are now two short distances, 1=m and the lattice
spacing a. That does not run afoul of the assumptions
of HQET; it means merely that the short-distance coef-
�cients must be modi�ed to depend on a as well as m.
Then one may use HQET to develop heavy-quark expan-
sions for lattice observables. The expansion for the rest
mass M1 of a spin-J meson is [23]

M1 = m1 + ��lat �
�1lat
2m2

� dJ
�2lat
2mB

+O(1=m2); (2)

where m1, 1=2m2, and 1=2mB = zB lat=2m2 are the modi-
�ed short-distance coe�cients. The rest mass and kinetic
mass M2 are de�ned through the energy

E(p) =M1 +
p
2

2M2
+ � � � (3)

of a state with small momentum p. Because the lattice
breaks Lorentz invariance,M2 need not equalM1, except
asymptotically as Ma ! 0. For quarks m1 and m2 are
de�ned similarly in matching calculations.
As ma! 0 lattice QCD becomes continuum QCD, so

then m1;2 ! m and zB lat ! zB. Owing to limitations
in computer resources there are, however, no lattice data
available with ma � 1 and m � �QCD. The advan-
tage of Eq. (2) is that it holds for general ma, as long
as m2;B � �QCD. One may, therefore, apply Eq. (2) to
published data for M1.
Like their continuum-QCD counterparts, the quanti-

ties ��lat, �1lat, and �2lat do not depend on the heavy-
quark mass. They are labeled with the subscript \lat"
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because the gluons and light quarks are also on the lat-
tice. Their lattice-spacing dependence can be separated
from continuum QCD with Symanzik's formalism [24],
which implies, for example,

��lat = �� + aC1M1 + a2C2M2 + � � � ; (4)

where the Ci represent short-distance coe�cients and the
Mi long-distance matrix elements in Symanzik's e�ective
Lagrangian. Equation (4) is a good guide for extrapolat-
ing a! 0 as soon as �QCDa� 1. Because lattice-spacing
e�ects of the heavy quark are isolated in Eq. (2), it does
not matter if ma is not small.
Our method is to take Monte Carlo data for M1 over a

wide range of heavy quark masses, combine them with
separate calculations of the short-distance coe�cients,
and perform �ts to Eq. (2). This is very simple for �2lat:

1
2mB(M1B� �M1B) = �2lat; (5)

with quark masses m2 � �QCD and with �xed � (and a).
For ��lat and �1lat we consider the spin-averaged rest mass
�M1 := 1

4(3M1B� + M1B). Then �2lat drops out, and
Eq. (2) becomes

�M1 �m1 = ��lat �
�1lat
2m2

: (6)

Equation (6) is the crux of our analysis: we plot the
combination on the left-hand side against (2m2)

�1, and
a �t to the mass dependence yields ��lat and ��1lat. We
repeat this procedure for several lattice spacings to take
the continuum limit, guided by Eq. (4).
To carry out the analysis one must calculate M1, for

vector and pseudoscalar mesons, and the short-distance
coe�cients m1, m2 and mB. For the coe�cients we shall
use perturbative QCD. In lattice gauge theory

mX = m
[0]
X +

1X

l=1

g2l0 (1=a)m
[l]
X ; (7)

where g20(1=a) is the bare coupling for a lattice with spac-
ing a. For m1 and m2, Ref. [25] derived formulas to re-
late the higher-order terms to the self energy and gave

the one-loop terms m[1]
X for the lattice action used below.

For mB only the tree-level term m
[0]
B

is known, so, for
now, we cannot obtain a meaningful result for �2lat.
It is well-known that perturbation theory in g20(1=a)

converges poorly. Therefore, we re-express Eq. (7) in a
renormalized coupling, chosen with the Brodsky-Lepage-
Mackenzie (BLM) prescription [26]. For a coupling
in scheme S, we denote the BLM expansion parame-
ter g2S(q

�

S). The BLM scale q�S is given by

log q�S = �1
2b

(1)
S +

R
d4k log k f(k)R
d4k f(k)

; (8)

where k is the gluon momentum, and f(k) is the in-
tegrand of the quantity of interest, e.g.,

R
d4k f(k) =

m1. The constant b
(1)
S is the �0-dependent part of the

one-loop conversion from the arbitary scheme S to the
\V scheme", namely

(4�)2

g2S(q)
=

(4�)2

g2V (q)
+ �0b

(1)
S + b

(0)
S +O(g2); (9)

where for nf light quarks �0 = 11�2nf=3, and b
(0)
S is in-

dependent of nf . The V -scheme coupling g2V (q) is de�ned
so that the Fourier transform of the heavy-quark poten-
tial reads V (q) = �CFg

2
V (q)=q

2. Equation (8) shows that
the de�nitions of q� in Refs. [26] and [27] are equivalent
in the V scheme.1

The purpose of the logarithmically weighted integral
in Eq. (8) is to sum up into g2S higher-order terms of
order g2(�0g2)l�1, l > 1, which with a foolish choice of
scale would be large. The purpose of the constant is to
make g2S(q

�

S) independent of S, apart from contributions
of order g4(�0g2)l�2. This is an advantage in matching
calculations: it makes little numerical di�erence whether
one re-expands Eq. (7) in g20(q

�

0) or g
2
V (q

�

V ).
In practice, we use g2V (q

�

V ), computed from the 1 � 1
Wilson loop and g2V (3:40=a) as in Ref. [27]. For m1 the
BLM scale q�V = q�1 is now available [29]. Most of the
loop correction to m2 can be attributed to m1, leaving
an additional renormalization factor Zm2

[25]. The one-
loop term is small [25], but the BLM scale q�2 is not yet
available. So, for Zm2

we simply use q�2 = q�1�20%, fully
correlated, and tolerate an extra uncertainty.
For lattice meson masses M1 we select numerical data

from recent work on heavy-light pseudoscalar and vec-
tor mesons [30{32]. The data are tabulated in Table I.
For uniformity, the value in physical units of the lattice
spacing a is de�ned according to the suggestion of Som-
mer [34]. (It gives the same numerical result as the 1P-
1S splitting of charmonium.) The lattice spacing varies
by a factor of nearly 3, allowing us the take the contin-
uum limit as guided by Eq. (4). All data sets are in the
quenched approximation, which omits the back-reaction
of light quarks on the gluons and partly compensates the
omission by implicit shifts in the bare couplings. Light
quarks have the Sheikholeslami-Wohlert action [33], to
minimize discretization e�ects on the light quark. In
most data sets, the (physical) quark mass spans a range
from near charm to slightly above beauty, allowing us to
examine the mass dependence of Eq. (6).

1For convenience, we list some of the b
(i)
S

here. In the

V scheme b
(1)
V

= b
(0)
V

= 0, by de�nition; in the MS scheme

b
(1)

MS
= 5=3, b

(0)

MS
= �8; for the bare gauge coupling [28] b

(1)
0 =

b
(1)

MS
� 6�K1(1) = 9:12637, b

(0)
0 = b

(0)

MS
+2�[2d10 +33K1(1)] =

�16:1213.
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TABLE I. Numerical and perturbative results used in this
paper. The �rst column cites the source of the numerical data.
The second column includes the plotting symbol used in all
�gures. Statistical errors are given for a�1 and �M1; systematic
(perturbative) errors for m2. Perturbative results are from
input data to the numerical calculations and Refs. [25,29].

Ref. a�1 (GeV) �M1a m1a m2a q�1a

[30] 3.35(2) 1.731(3) 1.560 2.761(54) 0.91

octagons 1.301(3) 1.122 1.567(21) 0.90

0.946(2) 0.761 0.903(7) 0.85

0.789(2) 0.602 0.674(4) 0.80

0.667(2) 0.477 0.514(2) 0.75

0.589(2) 0.398 0.420(1) 0.70

0.523(2) 0.331 0.343(1) 0.65

2.50(2) 2.147(4) 1.943 4.216(132) 0.90

squares 1.611(3) 1.399 2.217(49) 0.91

1.183(3) 0.961 1.229(17) 0.88

0.978(3) 0.750 0.880(9) 0.84

0.845(3) 0.613 0.686(5) 0.80

0.749(2) 0.514 0.558(3) 0.76

0.676(2) 0.438 0.466(2) 0.71

[31] 2.50(2) 2.557(7) 2.364 6.722(234) 0.88

crosses 1.403(14) 1.200 1.716(29) 0.90

0.726(10) 0.504 0.545(3) 0.75

1.77(1) 2.665(6) 2.422 6.773(373) 0.88

diamonds 1.663(4) 1.402 2.163(66) 0.91

0.964(4) 0.677 0.770(9) 0.81

0.876(4) 0.582 0.642(6) 0.77

1.16(1) 2.829(6) 2.535 6.735(806) 0.88

fancy 2.345(6) 2.037 4.067(381) 0.90

squares 1.935(6) 1.612 2.599(179) 0.91

1.489(5) 1.139 1.498(63) 0.89

1.274(5) 0.917 1.112(34) 0.85

[32] 2.90(2) 0.958(7) 0.748 0.883(8) 0.84

fancy 0.849(6) 0.636 0.719(5) 0.81

diamonds 0.762(6) 0.548 0.602(3) 0.78

0.670(5) 0.454 0.485(2) 0.73

FIG. 1. Plot of �M1 � m1 vs. (2m2)
�1. The key for the

plotting symbols is given in Table I. For clarity the error
envelopes for the crosses and fancy diamonds are not shown.

Figure 1 plots �M1�m1 vs. (2m2)�1. The vertical error
bars reect statistical uncertainties only, and the horizon-
tal error bars reect these and the variation in q�2. There
is noticeable curvature, which is not surprising because
the data reach masses below the charmed quark mass.
We handle the curvature in two ways. First, we �t lin-
early the subset of data with m2 � 2:5 GeV. Second, we
extend Eq. (6) to order 1=m2 [23]:

�M1 �m1 = ��lat �
�1lat
2m2

+
�1lat
4m2

D

�
T1lat + T3lat
(2m2)2

; (10)

where 1=4m2
D is the short-distance coe�cient of the Dar-

win term, and �1lat, T1lat, and T3lat are matrix ele-
ments of higher-dimension terms [35{37], with the nota-
tion of Ref. [37], for gluons and light quarks on a lattice.
The 1=m2 terms are important for smaller masses, where
mD � m2 within the precision available. Thus, only one
unknown is needed to model the curvature.
We take the second method as our standard and use

the �rst for comparison. The solid curves in Fig. 1 are
the best �t to Eq. (10). We use the bootstrap method to
propagate the underlying uncertainties through the �t.
In this way we account fully (partially) for correlations
in the data from Ref. [31] (Refs. [30,32]). The dotted
lines show the error envelopes of the �ts; they hug the
best �t in the region of interpolation and are out in the
region of extrapolation.
As expected, ��lat and �1lat depend on the lattice spac-

ing a. For the data sets used, the coe�cient C1 in Eq. (4)
is of order �s and the coe�cient C2 is of order 1. Asymp-
totically, the former dominates, so we �t ��lat linearly in a
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FIG. 2. Continuum limit of ��.

to take the continuum limit. The slope, C1M1, is some-
what large for a quantity of order �s�

2
QCD, so we also

consider �ts linear in a2. The �2=dof is smaller for the
�t linear in a, so we take it for our central value and take
the other to quote a systematic error. In future work,
one should tune the light quark action so that C1 is of
order a [38]; then the extrapolation Ansatz would be un-
ambiguous.

Figure 2 plots ��lat vs. a. The error bars are from the
bootstrap of the �t described above. From now on we dis-
card the data sets denoted in Fig. 1 by crosses and fancy
diamonds. Their error bars are very large: the crosses
have too few points and the mass range of the fancy dia-
monds is too small. ��lat exhibits signi�cant dependence
on a; in this case, it would have been misleading to de-
termine �� with data at only one lattice spacing.

Figure 3 plots �1lat vs. a. The error bars are again
from the bootstrap of the mass �t. In this case, lattice
spacing e�ects are smaller than other uncertainties, and
it does not matter whether we take the continuum limit
with a �t to a or to a2.

The results exhibit a strong correlation in the ��-�1
plane, as shown in Fig. 4. The points show the scatter
from the bootstrap method. The ellipses surround 68%
of the points. Dark grey (red) points show the standard
analysis, with �ts quadratic in 1=2m2 and linear in a.
Light grey (blue) points show the analysis with contin-
uum extrapolation linear in a2, yielding smaller ��. The
results from four di�erent Ans�atze for �tting are tabu-
lated in Table II.

Clearly the choice of lattice-spacing extrapolation
dominates the uncertainties of Monte Carlo statistics
and q�2, which are propagated carefully through the �ts.

FIG. 3. Continuum limit of �1.

FIG. 4. Correlation of our results for �� and �1 from two
analyses of the continuum limit. Dark grey (red) points are
the standard analysis, quadratic in 1=2m2 and linear in a.
Light grey (blue) points are quadratic in 1=2m2 and linear
in a2, yielding smaller ��. The ellipse in the upper left is the
result of Ref. [13].
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TABLE II. Numerical results for four di�erent �t
Ans�atze. The column labeled � gives the normalized coef-
�cient of correlation.

�t �� (GeV) ��1 (GeV2) �

Eq. (10), a 0:68� 0:02 0:45� 0:12 0.869

Eq. (6), a 0:67+0:01
�0:02 0:44� 0:11 0.852

Eq. (10), a2 0:57� 0:01 0:40� 0:07 0.860

Eq. (6), a2 0:57� 0:01 0:41� 0:08 0.871

To account for this, we take central value for �� from the
standard analysis, but we extend the error bar to encom-
pass the full range suggested by the a2 �t. On the other
hand, the standard �t gives an error bar for ��1 that
covers the range of the other �ts, so we simply use it.
With these considerations we �nd,

�� = 0:68+0:02
�0:12 GeV; (11)

�1 = �(0:45� 0:12) GeV2: (12)

The standard �t also yields an estimate of dimension-
three combination T1 + T3 � �1 = 0:51� 0:22 GeV3.
The orientation of the ellipses from our method is

roughly orthogonal to that found from moments of the
lepton energy spectrum [13,14] or the hadronic invariant
mass spectrum [15] of inclusive B decay. For illustration,
the former is shown in Fig. 4 as well.
There are two uncertainties that we cannot yet address

fully. One is the e�ect of �nite volume on M1. Studies
of the volume dependence of heavy-light systems [39,40]
suggest that �nite-volume e�ects are negligible compared
to our other uncertainties. A more serious uncertainty
arises because the numerical data were generated in the
quenched approximation. One may expect that the shift
in �� owing to quenching is small, for the same reason that
the shift in the heavy-quark mass is small [41]. A qual-
itative way of estimating the e�ect of quenching is to
check other, similar observables. With Sommer's de�ni-
tion of a one �nds discrepancies in m� of around �10
percent, suggesting that �� could be 10 percent smaller,
and �1 20 percent larger, than quoted here.
We do not quote an uncertainty from the perturba-

tive calculation of the short-distance e�ects. Because
HQET, as customarily applied, is de�ned with a per-
turbative renormalization scheme, any application su�ers
from such uncertainties. Our results for �� and �1 can be
used consistently with the pole mass in next-to-leading
order, BLM-improved phenomenology. In such an appli-
cation a single uncertainty from truncating perturbative
QCD should be quoted. Indeed, because the pole mass
has large higher-order contributions, so does ��, but in
a physical application the large terms cancel. If next-
to-next-to-leading accuracy is required, then the analysis
presented here must be repeated with (as yet uncalcu-
lated) two-loop short-distance coe�cients.

Our central value for �� is somewhat larger than those
from QCD sum rules [42], but taking the uncertainties
into account, there is no inconsistency. Our result for
�1 agrees with some sum-rule estimates, but not oth-
ers [43]. It is not clear what to make of the discrepancies
in sum rules. Our uncertainties are reducible, and below
we identify ways to improve the numerical data that go
into our analysis.
In the past, there have been attempts to calculate the

lambdas in a discretization of the in�nite-mass limit [44].
This method faces two di�culties. First, it yields the
lambdas in a lattice renormalization scheme, and the re-
sults must be converted to the continuum schemes in
common use. The conversion must deal with power-law
divergences [45]. Second, it identi�es the HQET separa-
tion scale � with the ultraviolet cuto� �=a of the gluons,
so it is hard to take the continuum limit. Our method
circumvents these obstacles by formulating HQET as an
e�ective �eld theory to describe sets of (lattice) data. In
this way HQET obtains its own scale � and the second
problem does not arise. The �rst problem arises from
taking m!1 with a �xed. Our method sidesteps it by
�tting the mass dependence in the regime m1a <� 2, and,
since m � �QCD, HQET identi�es the �t parameters
with ��lat, �1lat, and �2lat.
In this paper, we have presented a new way to deter-

mine ��, �1, and �2. Using numerical data in the litera-
ture, we have shown that it is feasible to carry out the
necessary �t in quark mass and extrapolation in lattice
spacing to obtain encouraging results. Systematic un-
certainties in the mass extrapolation might be improved
using the hopping-parameter expansion [46], to create
a continuous range of heavy-quark mass. With small
enough statistical errors and a wide enough range of data,
it might be possible also to extract the dimension-three
quantities �i and Ti, although that task requires the cal-
culation of several additional short-distance coe�cients.
Similarly, systematic uncertainties in the lattice-spacing
extrapolation could be improved by adjusting the light
quarks' action so that C1 in Eq. (4) is rendered of or-
der a [38]. Finally, our methods could be applied to full
QCD, once such data sets have been generated, to obtain
truly ab initio results.
We thank Shoji Hashimoto for sending us data used,

but not tabulated, in Ref. [30]. Fermilab is operated
by Universities Research Association Inc., under contract
with the U.S. Department of Energy.
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